
<u>SENSITRON</u> SEMICONDUCTOR

Technical Data DATASHEET 5284, Rev. B.1

Three-Phase IGBT BRIDGE with BRAKE IGBT Three-Phase Input BRIDGE with INRUSH SCR

DESCRIPTION:

- 1200 VOLT, 150 AMP, THREE PHASE IGBT BRIDGE
- UPPER & LOWER REGENERATIVE BRAKE IGBT SWITCHES
- USE OF LATEST 4TH GENERATION IGBT AND DIODE TO MINIMIZE TOTAL LOSSES
- 1200 VOLT, 25 AMP BRAKE IGBT
- 1200 VOLT, 133 AMP INRUSH THYRISTOR (SCR)
- 1200 VOLT, 63A THREE PHASE DIODE BRIDGE
- RTD TO MONITOR MODULE TEMPERATURE
- NEAR HERMETIC CONSTRUCTION
- AISIC BASE PLATE FOR HIGH TEMPERATURE CYCLING CAPABILITY
- AIN SUBSTRATE FOR HIGH POWER CAPABILITY
- LOW PROFILE LIGHT WEIGHT PACKAGE WITH BUS BAR ATTACHMENT
- STANDARD FLYING LEAD I/O WITH OPTIONAL D-SUB CONNECTORS TO WIRE TO CONTROL BOARD W/O INTERFERENCE TO BUS BARS
- PARTS ARE SERIALIZED
- HTRB @ 125°C, 48 hrs.
- TEST DATA RECORDED

SENSITRON

SEMICONDUCTOR

Technical Data DATASHEET 5284, Rev. B.1

THREE PHASE IGBT SECTION

LECTRICAL CHARACTERISTICS PER IGBT DEVICE	((Tj=25°C UNLESS OTHERWISE SPECIFIED)					
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT		
INVERTER IGBT SPECIFICATIONS							
Collector to Emitter Breakdown Voltage	BVCES	1200	-	-	V		
$I_C = 4mA$, $V_{GE} = 0V$							
Gate Threshold Voltage	V _{GETH}	5.2	5.8	6.4	V		
Ic = 5.3mA, Vce = Vge							
Continuous Collector Current T _C = 25 ^c	°C Ic	-	-	150	А		
$T_{\rm C} = 80^{\circ}$	°C			95			
Zero Gate Voltage Collector Current	I _{CES}	-	-				
$V_{CE} = 1200V, V_{GE} = 0V T_i = 25^{\circ}C$				1	mA		
$V_{CE} = 800V, V_{GE} = 0V T_i = 125^{\circ}C$				25	mA		
Collector to Emitter Saturation Voltage, $T_j = 25$	°C V _{CE(SAT)}	-	1.9	2.4	V		
$I_{C} = 150 \text{A}, V_{GE} = 15 \text{V} \qquad \qquad T_{j} = 125$	°C		2.2				
Gate to Emitter Leakage Current (not measurable due to built-in G-E resistor)	I _{GES}			100	nA		
$V_{CE} = 0V, V_{GE} = 20V$							
IGBT Internal Gate Resistance		-	5	-	Ohm		
IGBT turn-on switching loss $V_{CE} = 600V$, $I_C = 150A$, $T_j = 25^{\circ}C$		-	5	-	mJ		
IGBT turn-off switching loss $V_{CE} = 600V$, $I_C = 150A$, $T_j = 25^{\circ}C$		-	10	-	mJ		
Short Circuit Withstand Time, Conditions 600V DC link,		-	10	-	μs		
V _{GE} =15V, I _{SC} = 600A, T _{start} < 175 ^o C							
Junction To Case Thermal Resistance	R _{θJC}	-	-	0.24	°C/W		
INVERTER DIODE SPECIFICATIONS			1		l		
Diode Peak Inverse Voltage	PIV	1200	-	-	V		
Continuous Forward Current, $T_c = 80 {}^{\circ}C$	IF	-	-	95	А		
Diode Forward Voltage $I_F = 150A, T_j = 25 \ ^{\circ}C$	VF	-	1.8	2.2	V		
Diode Peak Reverse Recovery Current I _F =150A, V _{RR} =600V, di/dt = 6000 A/µs, Tj = 25 ^o C	trr	-	220	-	A		
Diode switching loss I⊧=150A, V _{RR} =600V, di/dt = 6000 A/µs, Tj = 25 ^o C		-	7	-	mJ		
Junction To Case Thermal Resistance	Rejc	-	-	0.42	°C/W		

SENSITRON SEMICONDUCTOR

Technical Data DATASHEET 5284, Rev. B.1

BRAKE IGBT SPECIFICATIONS

Collector to Emitter Breakdown Voltage $I_{C} = 1.5 \text{mA}, V_{GE} = 0 \text{V}$		BV _{CES}	1200	-	-	V
Continuous Collector Current	T _C = 25 ^o C T _C = 80 ^o C	lc	-	-	45 25	А
Zero Gate Voltage Collector Current $V_{CE} = 1200 \text{ V}, \text{ V}_{GE} = 0 \text{ V} \text{ T}_i = 25^{\circ}\text{C}$		I _{CES}	-	-	5.0	mA
Collector to Emitter Saturation Voltage, $I_{C} = 25A, V_{GE} = 15V$	T _j = 25 °C T _j = 125 °C	Vce(sat)	-	1.7 2.0	2.2	V
Pulsed Collector Current, 0.5ms		Ісм	-	-	70	A
Junction To Case Thermal Resistance		R _{θJC}	-	-	0.9	°C/W

BRAKE FREE WHEEL DIODE SPECIFICATIONS

Diode Peak Inverse Voltage	PIV	1200	-	-	V
Continuous Forward Current, Tc = 80 °C	lF	-	-	25	А
Diode Forward Voltage, $I_F = 12 \text{ A}, T_j = 25 ^{\circ}\text{C}$	VF	-	-	1.3	V
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I _{RM}	-	-	0.05 0.5	mA
Junction To Case Thermal Resistance	Rejc	-	-	2.0	°C/W

INRUSH THYRISTOR (SCR) SPECIFICATIONS

Peak Inverse Voltage	PIV	1200	-	-	V
Continuous Forward Current (I _{RMS}) T _C = 80 ^O C	IT	-	-	133	А
Inrush Current, $T_j = 25 \ ^{\circ}C$, $V_R = 0$, $t = 8.3$ msec	IFSM	-	-	2400	А
Forward Voltage, $T_j = 25 \ ^{\circ}C$, $I_{GT} = 150 \text{mA}$, $I_T = 300 \text{A}$ pulse	Vak	-	-	1.8	V
Latching Current, $T_c = 25 \ ^{\circ}C$	l.	-	-	450	mA
Holding Current, $T_C = 25 \ ^{\circ}C$	Ін	-	-	200	mA
Gate Trigger Current, $V_D = 6V$ $T_C = 25 \ ^{\circ}C$	I _{GT}	-	-	150	mA
Tc=- 55 ^o C				240	
Junction To Case Thermal Resistance	R _{θJC}	-	-	0.27	°C/W

SENSITRON SEMICONDUCTOR

Technical Data DATASHEET 5284, Rev. B.1

INPUT RECTIFIER SPECIFICATIONS

Diode Peak Inverse Voltage		PIV	1200	-	-	V
Continuous Forward Current, T _C = 80 ^o C		IF	-	-	63	A
Diode Forward Voltage, $I_F = 100A$, $T_j = 25 \ ^{o}C$		VF	-	-	1.3	V
Diode Leakage Current @ 1200V	T _j = 25 ^o C T _j = 125 ^o C	I _{RM}	-	-	0.05 2	mA
Junction To Case Thermal Resistance		Rejc	-	-	0.63	°C/W

RTD SPECIFICATIONS (R = 1kΩ at 00C)

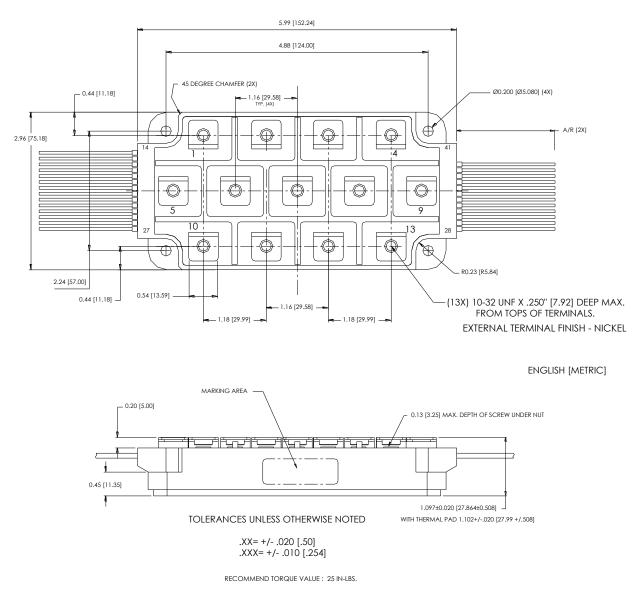
Temperature coefficient (0°C – 100°C)	Kτ	3850	ppm/K
Resistance at -55°C (temperature tolerance ±0.58°C)	R-55	783.19	Ω
Resistance at 125°C (temperature tolerance ±0.93°C)		1479.51	Ω

MODULE STORAGE AND OPERATING CONDITIONS

Operating Junction Temperature	Tj	-55	-	150	°C
Storage Ambient Temperature	Ts	-55	-	150	°C
Operating Case Temperature	Tc	-55	-	100	℃
Operating Ambient Temperature	TA	-55	-	100	℃
Operating Altitude		-	-	50000	Ft

MODULE ISOLATION

All pins to baseplate (sea level)	-	2500	-	-	VDC
All other pins to RTD (sea level)	-	1500	-	-	VDC
All pins to baseplate (sea level), 60Hz	-	1500	-	-	VAC

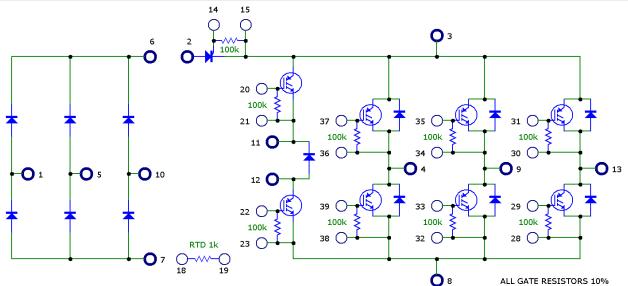

MODULE TOTAL WEIGHT

Total Weight		-	-	600	grams
--------------	--	---	---	-----	-------

<u>SENSITRON</u> SEMICONDUCTOR

Technical Data DATASHEET 5284, Rev. B.1

MECHANICAL OUTLINE:



Recommended Thermal Pad Material is Laird Technologies Tgon 805 (to be ordered separately) .

<u>SENSITRON</u> SEMICONDUCTOR

Technical Data DATASHEET 5284, Rev. B.1

SCHEMATIC:

Wire Details (all AWG #24, 200°C, 1000V insulated):

Circuit Ref	Function	Wire Color	Circuit Ref	Function	Wire Color
14	Inrush SCR Gate	Violet	28	Phase C Bottom Emitter	Black
15	Inrush SCR Cathode	Brown	29	Phase C Bottom Gate	Brown
16	N/C		30	Phase C Top Emitter	Red
17	N/C		31	Phase C Top Gate	Orange
18	RTD	Red	32	Phase B Bottom Emitter	Black
19	RTD	Orange	33	Phase B Bottom Gate	Yellow
20	Top Brake IGBT Gate	Red	34	Phase B Top Emitter	Green
21	Top Brake IGBT Cathode	Orange	35	Phase B Top Gate	Blue
22	Bottom Brake IGBT Gate	Yellow	36	Phase A Top Emitter	Violet
23	Bottom Brake IGBT Cathode	Green	37	Phase A Top Gate	Gray
24	N/C		38	Phase A Bottom Emitter	Black
25	N/C		39	Phase A Bottom Gate	White
26	N/C		40	N/C	
27	N/C		41	N/C	

DISCLAIMER:

1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).

2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.

3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.

A- In no event shall Sensitiron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.

6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.

7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.